EconPapers    
Economics at your fingertips  
 

Visualization of SNPs with t-SNE

Alexander Platzer

PLOS ONE, 2013, vol. 8, issue 2, 1-6

Abstract: Background: Single Nucleotide Polymorphisms (SNPs) are one of the largest sources of new data in biology. In most papers, SNPs between individuals are visualized with Principal Component Analysis (PCA), an older method for this purpose. Principal Findings: We compare PCA, an aging method for this purpose, with a newer method, t-Distributed Stochastic Neighbor Embedding (t-SNE) for the visualization of large SNP datasets. We also propose a set of key figures for evaluating these visualizations; in all of these t-SNE performs better. Significance: To transform data PCA remains a reasonably good method, but for visualization it should be replaced by a method from the subfield of dimension reduction. To evaluate the performance of visualization, we propose key figures of cross-validation with machine learning methods, as well as indices of cluster validity.

Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0056883 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 56883&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0056883

DOI: 10.1371/journal.pone.0056883

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0056883