EconPapers    
Economics at your fingertips  
 

Limiting Factors for Mapping Corpus-Based Semantic Representations to Brain Activity

John A Bullinaria and Joseph P Levy

PLOS ONE, 2013, vol. 8, issue 3, 1-12

Abstract: To help understand how semantic information is represented in the human brain, a number of previous studies have explored how a linear mapping from corpus derived semantic representations to corresponding patterns of fMRI brain activations can be learned. They have demonstrated that such a mapping for concrete nouns is able to predict brain activations with accuracy levels significantly above chance, but the more recent elaborations have achieved relatively little performance improvement over the original study. In fact, the absolute accuracies of all these models are still currently rather limited, and it is not clear which aspects of the approach need improving in order to achieve performance levels that might lead to better accounts of human capabilities. This paper presents a systematic series of computational experiments designed to identify the limiting factors of the approach. Two distinct series of artificial brain activation vectors with varying levels of noise are introduced to characterize how the brain activation data restricts performance, and improved corpus based semantic vectors are developed to determine how the word set and model inputs affect the results. These experiments lead to the conclusion that the current state-of-the-art input semantic representations are already operating nearly perfectly (at least for non-ambiguous concrete nouns), and that it is primarily the quality of the fMRI data that is limiting what can be achieved with this approach. The results allow the study to end with empirically informed suggestions about the best directions for future research in this area.

Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0057191 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 57191&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0057191

DOI: 10.1371/journal.pone.0057191

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0057191