EconPapers    
Economics at your fingertips  
 

Adaptive Controller for Dynamic Power and Performance Management in the Virtualized Computing Systems

Chengjian Wen, Xiang Long and Yifen Mu

PLOS ONE, 2013, vol. 8, issue 2, 1-10

Abstract: Power and performance management problem in large scale computing systems like data centers has attracted a lot of interests from both enterprises and academic researchers as power saving has become more and more important in many fields. Because of the multiple objectives, multiple influential factors and hierarchical structure in the system, the problem is indeed complex and hard. In this paper, the problem will be investigated in a virtualized computing system. Specifically, it is formulated as a power optimization problem with some constraints on performance. Then, the adaptive controller based on least-square self-tuning regulator(LS-STR) is designed to track performance in the first step; and the resource solved by the controller is allocated in order to minimize the power consumption as the second step. Some simulations are designed to test the effectiveness of this method and to compare it with some other controllers. The simulation results show that the adaptive controller is generally effective: it is applicable for different performance metrics, for different workloads, and for single and multiple workloads; it can track the performance requirement effectively and save the power consumption significantly.

Date: 2013
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0057551 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 57551&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0057551

DOI: 10.1371/journal.pone.0057551

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0057551