EconPapers    
Economics at your fingertips  
 

An Efficient Hierarchical Generalized Linear Mixed Model for Mapping QTL of Ordinal Traits in Crop Cultivars

Jian-Ying Feng, Jin Zhang, Wen-Jie Zhang, Shi-Bo Wang, Shi-Feng Han and Yuan-Ming Zhang

PLOS ONE, 2013, vol. 8, issue 4, 1-11

Abstract: Many important phenotypic traits in plants are ordinal. However, relatively little is known about the methodologies for ordinal trait association studies. In this study, we proposed a hierarchical generalized linear mixed model for mapping quantitative trait locus (QTL) of ordinal traits in crop cultivars. In this model, all the main-effect QTL and QTL-by-environment interaction were treated as random, while population mean, environmental effect and population structure were fixed. In the estimation of parameters, the pseudo data normal approximation of likelihood function and empirical Bayes approach were adopted. A series of Monte Carlo simulation experiments were performed to confirm the reliability of new method. The result showed that new method works well with satisfactory statistical power and precision. The new method was also adopted to dissect the genetic basis of soybean alkaline-salt tolerance in 257 soybean cultivars obtained, by stratified random sampling, from 6 geographic ecotypes in China. As a result, 6 main-effect QTL and 3 QTL-by-environment interactions were identified.

Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0059541 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 59541&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0059541

DOI: 10.1371/journal.pone.0059541

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0059541