EconPapers    
Economics at your fingertips  
 

Comparability of Mixed IC50 Data – A Statistical Analysis

Tuomo Kalliokoski, Christian Kramer, Anna Vulpetti and Peter Gedeck

PLOS ONE, 2013, vol. 8, issue 4, 1-12

Abstract: The biochemical half maximal inhibitory concentration (IC50) is the most commonly used metric for on-target activity in lead optimization. It is used to guide lead optimization, build large-scale chemogenomics analysis, off-target activity and toxicity models based on public data. However, the use of public biochemical IC50 data is problematic, because they are assay specific and comparable only under certain conditions. For large scale analysis it is not feasible to check each data entry manually and it is very tempting to mix all available IC50 values from public database even if assay information is not reported. As previously reported for Ki database analysis, we first analyzed the types of errors, the redundancy and the variability that can be found in ChEMBL IC50 database. For assessing the variability of IC50 data independently measured in two different labs at least ten IC50 data for identical protein-ligand systems against the same target were searched in ChEMBL. As a not sufficient number of cases of this type are available, the variability of IC50 data was assessed by comparing all pairs of independent IC50 measurements on identical protein-ligand systems. The standard deviation of IC50 data is only 25% larger than the standard deviation of Ki data, suggesting that mixing IC50 data from different assays, even not knowing assay conditions details, only adds a moderate amount of noise to the overall data. The standard deviation of public ChEMBL IC50 data, as expected, resulted greater than the standard deviation of in-house intra-laboratory/inter-day IC50 data. Augmenting mixed public IC50 data by public Ki data does not deteriorate the quality of the mixed IC50 data, if the Ki is corrected by an offset. For a broad dataset such as ChEMBL database a Ki- IC50 conversion factor of 2 was found to be the most reasonable.

Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0061007 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 61007&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0061007

DOI: 10.1371/journal.pone.0061007

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0061007