Prediction of Selected Physical and Mechanical Properties of a Telechelic Polybenzoxazine by Molecular Simulation
Wan Aminah Wan Hassan,
Ian Hamerton and
Brendan J Howlin
PLOS ONE, 2013, vol. 8, issue 4, 1-10
Abstract:
Molecular simulation is becoming an important tool for both understanding polymeric structures and predicting their physical and mechanical properties. In this study, temperature ramped molecular dynamics simulations are used to predict two physical properties (i.e., glass transition temperature and thermal degradation temperature) of a previously synthesised and published telechelic benzoxazine. Plots of simulated density versus temperature show decreases in density within the same temperature range as experimental values for the thermal degradation. The predicted value for the thermal degradation temperature for the cured polybenzoxazine based on the telechelic polyetherketone (PEK) monomer was ca. 400°C, in line with the experimental thermal degradation temperature range of 450°C to 500°C. Mechanical Properties of both the unmodified PEK and the telechelic benzoxazines are simulated and compared to experimental values (where available). The introduction of the benoxazine moieties are predicted to increase the elastic moduli in line with the increase of crosslinking in the system.
Date: 2013
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0061179 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 61179&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0061179
DOI: 10.1371/journal.pone.0061179
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().