EconPapers    
Economics at your fingertips  
 

Pharmacointeraction Network Models Predict Unknown Drug-Drug Interactions

Aurel Cami, Shannon Manzi, Alana Arnold and Ben Y Reis

PLOS ONE, 2013, vol. 8, issue 4, 1-9

Abstract: Drug-drug interactions (DDIs) can lead to serious and potentially lethal adverse events. In recent years, several drugs have been withdrawn from the market due to interaction-related adverse events (AEs). Current methods for detecting DDIs rely on the accumulation of sufficient clinical evidence in the post-market stage – a lengthy process that often takes years, during which time numerous patients may suffer from the adverse effects of the DDI. Detection methods are further hindered by the extremely large combinatoric space of possible drug-drug-AE combinations. There is therefore a practical need for predictive tools that can identify potential DDIs years in advance, enabling drug safety professionals to better prioritize their limited investigative resources and take appropriate regulatory action. To meet this need, we describe Predictive Pharmacointeraction Networks (PPINs) – a novel approach that predicts unknown DDIs by exploiting the network structure of all known DDIs, together with other intrinsic and taxonomic properties of drugs and AEs. We constructed an 856-drug DDI network from a 2009 snapshot of a widely-used drug safety database, and used it to develop PPIN models for predicting future DDIs. We compared the DDIs predicted based solely on these 2009 data, with newly reported DDIs that appeared in a 2012 snapshot of the same database. Using a standard multivariate approach to combine predictors, the PPIN model achieved an AUROC (area under the receiver operating characteristic curve) of 0.81 with a sensitivity of 48% given a specificity of 90%. An analysis of DDIs by severity level revealed that the model was most effective for predicting “contraindicated” DDIs (AUROC = 0.92) and less effective for “minor” DDIs (AUROC = 0.63). These results indicate that network based methods can be useful for predicting unknown drug-drug interactions.

Date: 2013
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0061468 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 61468&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0061468

DOI: 10.1371/journal.pone.0061468

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0061468