Predicting National Suicide Numbers with Social Media Data
Hong-Hee Won,
Woojae Myung,
Gil-Young Song,
Won-Hee Lee,
Jong-Won Kim,
Bernard J Carroll and
Doh Kwan Kim
PLOS ONE, 2013, vol. 8, issue 4, 1-6
Abstract:
Suicide is not only an individual phenomenon, but it is also influenced by social and environmental factors. With the high suicide rate and the abundance of social media data in South Korea, we have studied the potential of this new medium for predicting completed suicide at the population level. We tested two social media variables (suicide-related and dysphoria-related weblog entries) along with classical social, economic and meteorological variables as predictors of suicide over 3 years (2008 through 2010). Both social media variables were powerfully associated with suicide frequency. The suicide variable displayed high variability and was reactive to celebrity suicide events, while the dysphoria variable showed longer secular trends, with lower variability. We interpret these as reflections of social affect and social mood, respectively. In the final multivariate model, the two social media variables, especially the dysphoria variable, displaced two classical economic predictors – consumer price index and unemployment rate. The prediction model developed with the 2-year training data set (2008 through 2009) was validated in the data for 2010 and was robust in a sensitivity analysis controlling for celebrity suicide effects. These results indicate that social media data may be of value in national suicide forecasting and prevention.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0061809 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 61809&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0061809
DOI: 10.1371/journal.pone.0061809
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().