Dicoogle, a Pacs Featuring Profiled Content Based Image Retrieval
Frederico Valente,
Carlos Costa and
Augusto Silva
PLOS ONE, 2013, vol. 8, issue 5, 1-12
Abstract:
Content-based image retrieval (CBIR) has been heralded as a mechanism to cope with the increasingly larger volumes of information present in medical imaging repositories. However, generic, extensible CBIR frameworks that work natively with Picture Archive and Communication Systems (PACS) are scarce. In this article we propose a methodology for parametric CBIR based on similarity profiles. The architecture and implementation of a profiled CBIR system, based on query by example, atop Dicoogle, an open-source, full-fletched PACS is also presented and discussed. In this solution, CBIR profiles allow the specification of both a distance function to be applied and the feature set that must be present for that function to operate. The presented framework provides the basis for a CBIR expansion mechanism and the solution developed integrates with DICOM based PACS networks where it provides CBIR functionality in a seamless manner.
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0061888 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 61888&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0061888
DOI: 10.1371/journal.pone.0061888
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().