Modeling and Automatic Feedback Control of Tremor: Adaptive Estimation of Deep Brain Stimulation
Muhammad Rehan and
Keum-Shik Hong
PLOS ONE, 2013, vol. 8, issue 4, 1-11
Abstract:
This paper discusses modeling and automatic feedback control of (postural and rest) tremor for adaptive-control-methodology-based estimation of deep brain stimulation (DBS) parameters. The simplest linear oscillator-based tremor model, between stimulation amplitude and tremor, is investigated by utilizing input-output knowledge. Further, a nonlinear generalization of the oscillator-based tremor model, useful for derivation of a control strategy involving incorporation of parametric-bound knowledge, is provided. Using the Lyapunov method, a robust adaptive output feedback control law, based on measurement of the tremor signal from the fingers of a patient, is formulated to estimate the stimulation amplitude required to control the tremor. By means of the proposed control strategy, an algorithm is developed for estimation of DBS parameters such as amplitude, frequency and pulse width, which provides a framework for development of an automatic clinical device for control of motor symptoms. The DBS parameter estimation results for the proposed control scheme are verified through numerical simulations.
Date: 2013
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0062888 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 62888&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0062888
DOI: 10.1371/journal.pone.0062888
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().