EconPapers    
Economics at your fingertips  
 

Bacterial Chemotaxis: Introverted or Extroverted? A Comparison of the Advantages and Disadvantages of Basic Forms of Metabolism-Based and Metabolism-Independent Behavior Using a Computational Model

Matthew D Egbert

PLOS ONE, 2013, vol. 8, issue 5, 1-11

Abstract: Using a minimal model of metabolism, we examine the limitations of behavior that is (a) solely in response to environmental phenomena or (b) solely in response to metabolic dynamics, showing that basic forms of each of these kinds of behavior are incapable of driving survival-prolonging behavior in certain situations. Inspired by experimental evidence of concurrent metabolism-based and metabolism-independent chemotactic mechanisms in Escherichia coli and Rhodobacter sphaeroides, we then investigate how metabolism-independent and metabolism-based sensitivities can be integrated into a single behavioral response, demonstrating that a simple switching mechanism can be sufficient to effectively integrate metabolism-based and metabolism-independent behaviors. Finally, we use a spatial simulation of bacteria to show that the investigated forms of behavior produce different spatio-temporal patterns that are influenced by the metabolic-history of the bacteria. We suggest that these patterns could be a way to experimentally derive insight into the relationship between metabolism and chemotaxis in real bacteria.

Date: 2013
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0063617 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 63617&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0063617

DOI: 10.1371/journal.pone.0063617

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0063617