Leuconostoc Mesenteroides Growth in Food Products: Prediction and Sensitivity Analysis by Adaptive-Network-Based Fuzzy Inference Systems
Hue-Yu Wang,
Ching-Feng Wen,
Yu-Hsien Chiu,
I-Nong Lee,
Hao-Yun Kao,
I-Chen Lee and
Wen-Hsien Ho
PLOS ONE, 2013, vol. 8, issue 5, 1-16
Abstract:
Background: An adaptive-network-based fuzzy inference system (ANFIS) was compared with an artificial neural network (ANN) in terms of accuracy in predicting the combined effects of temperature (10.5 to 24.5°C), pH level (5.5 to 7.5), sodium chloride level (0.25% to 6.25%) and sodium nitrite level (0 to 200 ppm) on the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. Methods: The ANFIS and ANN models were compared in terms of six statistical indices calculated by comparing their prediction results with actual data: mean absolute percentage error (MAPE), root mean square error (RMSE), standard error of prediction percentage (SEP), bias factor (Bf), accuracy factor (Af), and absolute fraction of variance (R2). Graphical plots were also used for model comparison. Conclusions: The learning-based systems obtained encouraging prediction results. Sensitivity analyses of the four environmental factors showed that temperature and, to a lesser extent, NaCl had the most influence on accuracy in predicting the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. The observed effectiveness of ANFIS for modeling microbial kinetic parameters confirms its potential use as a supplemental tool in predictive mycology. Comparisons between growth rates predicted by ANFIS and actual experimental data also confirmed the high accuracy of the Gaussian membership function in ANFIS. Comparisons of the six statistical indices under both aerobic and anaerobic conditions also showed that the ANFIS model was better than all ANN models in predicting the four kinetic parameters. Therefore, the ANFIS model is a valuable tool for quickly predicting the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0064995 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 64995&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0064995
DOI: 10.1371/journal.pone.0064995
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().