EconPapers    
Economics at your fingertips  
 

When Dread Risks Are More Dreadful than Continuous Risks: Comparing Cumulative Population Losses over Time

Nicolai Bodemer, Azzurra Ruggeri and Mirta Galesic

PLOS ONE, 2013, vol. 8, issue 6, 1-6

Abstract: People show higher sensitivity to dread risks, rare events that kill many people at once, compared with continuous risks, relatively frequent events that kill many people over a longer period of time. The different reaction to dread risks is often considered a bias: If the continuous risk causes the same number of fatalities, it should not be perceived as less dreadful. We test the hypothesis that a dread risk may have a stronger negative impact on the cumulative population size over time in comparison with a continuous risk causing the same number of fatalities. This difference should be particularly strong when the risky event affects children and young adults who would have produced future offspring if they had survived longer. We conducted a series of simulations, with varying assumptions about population size, population growth, age group affected by risky event, and the underlying demographic model. Results show that dread risks affect the population more severely over time than continuous risks that cause the same number of fatalities, suggesting that fearing a dread risk more than a continuous risk is an ecologically rational strategy.

Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0066544 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 66544&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0066544

DOI: 10.1371/journal.pone.0066544

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pone00:0066544