A Practical Approach Based on Analytic Deformable Algorithm for Scenic Image Registration
Wei-Yen Hsu
PLOS ONE, 2013, vol. 8, issue 6, 1-10
Abstract:
Background: Image registration is to produce an entire scene by aligning all the acquired image sequences. A registration algorithm is necessary to tolerance as much as possible for intensity and geometric variation among images. However, captured image views of real scene usually produce unexpected distortions. They are generally derived from the optic characteristics of image sensors or caused by the specific scenes and objects. Methods and Findings: An analytic registration algorithm considering the deformation is proposed for scenic image applications in this study. After extracting important features by the wavelet-based edge correlation method, an analytic registration approach is then proposed to achieve deformable and accurate matching of point sets. Finally, the registration accuracy is further refined to obtain subpixel precision by a feature-based Levenberg-Marquardt (FLM) method. It converges evidently faster than most other methods because of its feature-based characteristic. Conclusions: We validate the performance of proposed method by testing with synthetic and real image sequences acquired by a hand-held digital still camera (DSC) and in comparison with an optical flow-based motion technique in terms of the squared sum of intensity differences (SSD) and correlation coefficient (CC). The results indicate that the proposed method is satisfactory in the registration accuracy and quality of DSC images.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0066656 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 66656&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0066656
DOI: 10.1371/journal.pone.0066656
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().