Concentric and Eccentric Time-Under-Tension during Strengthening Exercises: Validity and Reliability of Stretch-Sensor Recordings from an Elastic Exercise-Band
Michael Skovdal Rathleff,
Kristian Thorborg and
Thomas Bandholm
PLOS ONE, 2013, vol. 8, issue 6, 1-
Abstract:
Background: Total, single repetition and contraction-phase specific (concentric and eccentric) time-under-tension (TUT) are important exercise-descriptors, as they are linked to the physiological and clinical response in exercise and rehabilitation. Objective: To investigate the validity and reliability of total, single repetition, and contraction-phase specific TUT during shoulder abduction exercises, based on data from a stretch-sensor attached to an elastic exercise band. Methods: A concurrent validity and interrater reliability study with two raters was conducted. Twelve participants performed five sets of 10 repetitions of shoulder abduction exercises with an elastic exercise band. Exercises were video-recorded to assess concurrent validity between TUT from stretch-sensor data and from video recordings (gold standard). Agreement between methods was calculated using Limits of Agreement (LoA), and the association was assessed by Pearson correlation coefficients. Interrater reliability was calculated using intraclass correlation coefficients (ICC 2.1). Results: Total, single repetition, and contraction-phase specific TUT – determined from video and stretch-sensor data – were highly correlated (r>0.99). Agreement between methods was high, as LoA ranged from 0.0 to 3.1 seconds for total TUT (2.6% of mean TUT), from -0.26 to 0.56 seconds for single repetition TUT (6.9%), and from -0.29 to 0.56 seconds for contraction-phase specific TUT (13.2-21.1%). Interrater reliability for total, single repetition and contraction-phase specific TUT was high (ICC>0.99). Interrater agreement was high, as LoA ranged from -2.11 to 2.56 seconds for total TUT (4.7%), from -0.46 to 0.50 seconds for single repetition TUT (9.7%) and from -0.41 to 0.44 seconds for contraction-phase specific TUT (5.2-14.5%). Conclusion: Data from a stretch-sensor attached to an elastic exercise band is a valid measure of total and single repetition time-under-tension, and the procedure is highly reliable. This method will enable clinicians and researchers to objectively quantify if home-based exercises are performed as prescribed, with respect to time-under-tension.
Date: 2013
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0068172 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 68172&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0068172
DOI: 10.1371/journal.pone.0068172
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().