Lunar-Rhythmic Molting in Laboratory Populations of the Noble Crayfish Astacus astacus (Crustacea, Astacidea): An Experimental Analysis
Robert Franke and
Gabriele Hoerstgen-Schwark
PLOS ONE, 2013, vol. 8, issue 7, 1-
Abstract:
Juvenile noble crayfish, Astacus astacus (Crustacea, Astacidea) in the second year of age were kept in the laboratory for a twelve-month period under continuing “summer conditions” (LD 16:8, 19°C). Molting processes in this population could be synchronized by artificial moonlight cycles. Peaks of exuviations occurred at “new moons”. Males showed a slightly higher degree of synchronization than females. A phase-shift of the artificial lunar cycle in relation to the natural cycle resulted in a corresponding shift of the molting cycle. This clearly demonstrates that changes in the nocturnal light regime provide the primary external information for the lunar-monthly molting rhythm. There is a first indication that lunar photic stimuli do not act directly but as a zeitgeber which entrains an endogenous molting rhythm to the lunar cycle. Moreover, the results of the long-term experiments suggest that the hibernal resting period of A. astacus in the field (no molts between October and April) may also involve some endogenous programming. Continuing artificial summer conditions can delay but not completely suppress this resting period. The adaptive significance of the phenomena and how the findings may be applied to improve the management of crowded crayfish stocks are discussed.
Date: 2013
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0068653 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 68653&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0068653
DOI: 10.1371/journal.pone.0068653
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().