Efficient Sampling in Fragment-Based Protein Structure Prediction Using an Estimation of Distribution Algorithm
David Simoncini and
Kam Y J Zhang
PLOS ONE, 2013, vol. 8, issue 7, 1-10
Abstract:
Fragment assembly is a powerful method of protein structure prediction that builds protein models from a pool of candidate fragments taken from known structures. Stochastic sampling is subsequently used to refine the models. The structures are first represented as coarse-grained models and then as all-atom models for computational efficiency. Many models have to be generated independently due to the stochastic nature of the sampling methods used to search for the global minimum in a complex energy landscape. In this paper we present , a fragment-based approach which shares information between the generated models and steers the search towards native-like regions. A distribution over fragments is estimated from a pool of low energy all-atom models. This iteratively-refined distribution is used to guide the selection of fragments during the building of models for subsequent rounds of structure prediction. The use of an estimation of distribution algorithm enabled to reach lower energy levels and to generate a higher percentage of near-native models. uses an all-atom energy function and produces models with atomic resolution. We observed an improvement in energy-driven blind selection of models on a benchmark of in comparison with the AbInitioRelax protocol.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0068954 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 68954&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0068954
DOI: 10.1371/journal.pone.0068954
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().