EconPapers    
Economics at your fingertips  
 

The Use of Bayesian Latent Class Cluster Models to Classify Patterns of Cognitive Performance in Healthy Ageing

Patrício Soares Costa, Nadine Correia Santos, Pedro Cunha, Joana Almeida Palha and Nuno Sousa

PLOS ONE, 2013, vol. 8, issue 8, 1-8

Abstract: The main focus of this study is to illustrate the applicability of latent class analysis in the assessment of cognitive performance profiles during ageing. Principal component analysis (PCA) was used to detect main cognitive dimensions (based on the neurocognitive test variables) and Bayesian latent class analysis (LCA) models (without constraints) were used to explore patterns of cognitive performance among community-dwelling older individuals. Gender, age and number of school years were explored as variables. Three cognitive dimensions were identified: general cognition (MMSE), memory (MEM) and executive (EXEC) function. Based on these, three latent classes of cognitive performance profiles (LC1 to LC3) were identified among the older adults. These classes corresponded to stronger to weaker performance patterns (LC1>LC2>LC3) across all dimensions; each latent class denoted the same hierarchy in the proportion of males, age and number of school years. Bayesian LCA provided a powerful tool to explore cognitive typologies among healthy cognitive agers.

Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0071940 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 71940&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0071940

DOI: 10.1371/journal.pone.0071940

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0071940