EconPapers    
Economics at your fingertips  
 

A Computational Model Associating Learning Process, Word Attributes, and Age of Acquisition

Shohei Hidaka

PLOS ONE, 2013, vol. 8, issue 11, 1-12

Abstract: We propose a new model-based approach linking word learning to the age of acquisition (AoA) of words; a new computational tool for understanding the relationships among word learning processes, psychological attributes, and word AoAs as measures of vocabulary growth. The computational model developed describes the distinct statistical relationships between three theoretical factors underpinning word learning and AoA distributions. Simply put, this model formulates how different learning processes, characterized by change in learning rate over time and/or by the number of exposures required to acquire a word, likely result in different AoA distributions depending on word type. We tested the model in three respects. The first analysis showed that the proposed model accounts for empirical AoA distributions better than a standard alternative. The second analysis demonstrated that the estimated learning parameters well predicted the psychological attributes, such as frequency and imageability, of words. The third analysis illustrated that the developmental trend predicted by our estimated learning parameters was consistent with relevant findings in the developmental literature on word learning in children. We further discuss the theoretical implications of our model-based approach.

Date: 2013
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0076242 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 76242&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0076242

DOI: 10.1371/journal.pone.0076242

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0076242