SeqNLS: Nuclear Localization Signal Prediction Based on Frequent Pattern Mining and Linear Motif Scoring
Jhih-rong Lin and
Jianjun Hu
PLOS ONE, 2013, vol. 8, issue 10, 1-12
Abstract:
Nuclear localization signals (NLSs) are stretches of residues in proteins mediating their importing into the nucleus. NLSs are known to have diverse patterns, of which only a limited number are covered by currently known NLS motifs. Here we propose a sequential pattern mining algorithm SeqNLS to effectively identify potential NLS patterns without being constrained by the limitation of current knowledge of NLSs. The extracted frequent sequential patterns are used to predict NLS candidates which are then filtered by a linear motif-scoring scheme based on predicted sequence disorder and by the relatively local conservation (IRLC) based masking.The experiment results on the newly curated Yeast and Hybrid datasets show that SeqNLS is effective in detecting potential NLSs. The performance comparison between SeqNLS with and without the linear motif scoring shows that linear motif features are highly complementary to sequence features in discerning NLSs. For the two independent datasets, our SeqNLS not only can consistently find over 50% of NLSs with prediction precision of at least 0.7, but also outperforms other state-of-the-art NLS prediction methods in terms of F1 score or prediction precision with similar or higher recall rates. The web server of the SeqNLS algorithm is available at http://mleg.cse.sc.edu/seqNLS.
Date: 2013
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0076864 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 76864&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0076864
DOI: 10.1371/journal.pone.0076864
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().