EconPapers    
Economics at your fingertips  
 

Reducing the Standard Deviation in Multiple-Assay Experiments Where the Variation Matters but the Absolute Value Does Not

Pablo Echenique-Robba, María Alejandra Nelo-Bazán and José A Carrodeguas

PLOS ONE, 2013, vol. 8, issue 10, 1-11

Abstract: When the value of a quantity for a number of systems (cells, molecules, people, chunks of metal, DNA vectors, so on) is measured and the aim is to replicate the whole set again for different trials or assays, despite the efforts for a near-equal design, scientists might often obtain quite different measurements. As a consequence, some systems’ averages present standard deviations that are too large to render statistically significant results. This work presents a novel correction method of a very low mathematical and numerical complexity that can reduce the standard deviation of such results and increase their statistical significance. Two conditions are to be met: the inter-system variations of matter while its absolute value does not, and a similar tendency in the values of must be present in the different assays (or in other words, the results corresponding to different assays must present a high linear correlation). We demonstrate the improvements this method offers with a cell biology experiment, but it can definitely be applied to any problem that conforms to the described structure and requirements and in any quantitative scientific field that deals with data subject to uncertainty.

Date: 2013
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0078205 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 78205&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0078205

DOI: 10.1371/journal.pone.0078205

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0078205