EconPapers    
Economics at your fingertips  
 

People Bouncing on Trampolines: Dramatic Energy Transfer, a Table-Top Demonstration, Complex Dynamics and a Zero Sum Game

Manoj Srinivasan, Yang Wang and Alison Sheets

PLOS ONE, 2013, vol. 8, issue 11, 1-13

Abstract: Jumping on trampolines is a popular backyard recreation. In some trampoline games (e.g., “seat drop war”), when two people land on the trampoline with only a small time-lag, one person bounces much higher than the other, as if energy has been transferred from one to the other. First, we illustrate this energy-transfer in a table-top demonstration, consisting of two balls dropped onto a mini-trampoline, landing almost simultaneously, sometimes resulting in one ball bouncing much higher than the other. Next, using a simple mathematical model of two masses bouncing passively on a massless trampoline with no dissipation, we show that with specific landing conditions, it is possible to transfer all the kinetic energy of one mass to the other through the trampoline – in a single bounce. For human-like parameters, starting with equal energy, the energy transfer is maximal when one person lands approximately when the other is at the bottom of her bounce. The energy transfer persists even for very stiff surfaces. The energy-conservative mathematical model exhibits complex non-periodic long-term motions. To complement this passive bouncing model, we also performed a game-theoretic analysis, appropriate when both players are acting strategically to steal the other player's energy. We consider a zero-sum game in which each player's goal is to gain the other player's kinetic energy during a single bounce, by extending her leg during flight. For high initial energy and a symmetric situation, the best strategy for both subjects (minimax strategy and Nash equilibrium) is to use the shortest available leg length and not extend their legs. On the other hand, an asymmetry in initial heights allows the player with more energy to gain even more energy in the next bounce. Thus synchronous bouncing unstable is unstable both for passive bouncing and when leg lengths are controlled as in game-theoretic equilibria.

Date: 2013
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0078645 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 78645&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0078645

DOI: 10.1371/journal.pone.0078645

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0078645