EconPapers    
Economics at your fingertips  
 

A Comparison of Gene Set Analysis Methods in Terms of Sensitivity, Prioritization and Specificity

Adi L Tarca, Gaurav Bhatti and Roberto Romero

PLOS ONE, 2013, vol. 8, issue 11, 1-10

Abstract: Identification of functional sets of genes associated with conditions of interest from omics data was first reported in 1999, and since, a plethora of enrichment methods were published for systematic analysis of gene sets collections including Gene Ontology and biological pathways. Despite their widespread usage in reducing the complexity of omics experiment results, their performance is poorly understood. Leveraging the existence of disease specific gene sets in KEGG and Metacore® databases, we compared the performance of sixteen methods under relaxed assumptions while using 42 real datasets (over 1,400 samples). Most of the methods ranked high the gene sets designed for specific diseases whenever samples from affected individuals were compared against controls via microarrays. The top methods for gene set prioritization were different from the top ones in terms of sensitivity, and four of the sixteen methods had large false positives rates assessed by permuting the phenotype of the samples. The best overall methods among those that generated reasonably low false positive rates, when permuting phenotypes, were PLAGE, GLOBALTEST, and PADOG. The best method in the category that generated higher than expected false positives was MRGSE.

Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0079217 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 79217&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0079217

DOI: 10.1371/journal.pone.0079217

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-29
Handle: RePEc:plo:pone00:0079217