EconPapers    
Economics at your fingertips  
 

Generalized Baum-Welch Algorithm Based on the Similarity between Sequences

Vahid Rezaei, Hamid Pezeshk and Horacio Pérez-Sa'nchez

PLOS ONE, 2013, vol. 8, issue 12, 1-7

Abstract: The profile hidden Markov model (PHMM) is widely used to assign the protein sequences to their respective families. A major limitation of a PHMM is the assumption that given states the observations (amino acids) are independent. To overcome this limitation, the dependency between amino acids in a multiple sequence alignment (MSA) which is the representative of a PHMM can be appended to the PHMM. Due to the fact that with a MSA, the sequences of amino acids are biologically related, the one-by-one dependency between two amino acids can be considered. In other words, based on the MSA, the dependency between an amino acid and its corresponding amino acid located above can be combined with the PHMM. For this purpose, the new emission probability matrix which considers the one-by-one dependencies between amino acids is constructed. The parameters of a PHMM are of two types; transition and emission probabilities which are usually estimated using an EM algorithm called the Baum-Welch algorithm. We have generalized the Baum-Welch algorithm using similarity emission matrix constructed by integrating the new emission probability matrix with the common emission probability matrix. Then, the performance of similarity emission is discussed by applying it to the top twenty protein families in the Pfam database. We show that using the similarity emission in the Baum-Welch algorithm significantly outperforms the common Baum-Welch algorithm in the task of assigning protein sequences to protein families.

Date: 2013
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0080565 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 80565&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0080565

DOI: 10.1371/journal.pone.0080565

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0080565