Computer Simulation of Leadership, Consensus Decision Making and Collective Behaviour in Humans
Song Wu and
Quanbin Sun
PLOS ONE, 2014, vol. 9, issue 1, 1-12
Abstract:
The aim of this study is to evaluate the reliability of a crowd simulation model developed by the authors by reproducing Dyer et al.'s experiments (published in Philosophical Transactions in 2009) on human leadership and consensus decision making in a computer-based environment. The theoretical crowd model of the simulation environment is presented, and its results are compared and analysed against Dyer et al.'s original experiments. It is concluded that the simulation results are largely consistent with the experiments, which demonstrates the reliability of the crowd model. Furthermore, the simulation data also reveals several additional new findings, namely: 1) the phenomena of sacrificing accuracy to reach a quicker consensus decision found in ants colonies was also discovered in the simulation; 2) the ability of reaching consensus in groups has a direct impact on the time and accuracy of arriving at the target position; 3) the positions of the informed individuals or leaders in the crowd could have significant impact on the overall crowd movement; and 4) the simulation also confirmed Dyer et al.'s anecdotal evidence of the proportion of the leadership in large crowds and its effect on crowd movement. The potential applications of these findings are highlighted in the final discussion of this paper.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0080680 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 80680&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0080680
DOI: 10.1371/journal.pone.0080680
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().