Fluctuation Analysis: Can Estimates Be Trusted?
Bernard Ycart
PLOS ONE, 2013, vol. 8, issue 12, 1-12
Abstract:
The estimation of mutation rates and relative fitnesses in fluctuation analysis is based on the unrealistic hypothesis that the single-cell times to division are exponentially distributed. Using the classical Luria-Delbrück distribution outside its modelling hypotheses induces an important bias on the estimation of the relative fitness. The model is extended here to any division time distribution. Mutant counts follow a generalization of the Luria-Delbrück distribution, which depends on the mean number of mutations, the relative fitness of normal cells compared to mutants, and the division time distribution of mutant cells. Empirical probability generating function techniques yield precise estimates both of the mean number of mutations and the relative fitness of normal cells compared to mutants. In the case where no information is available on the division time distribution, it is shown that the estimation procedure using constant division times yields more reliable results. Numerical results both on observed and simulated data are reported.
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0080958 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 80958&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0080958
DOI: 10.1371/journal.pone.0080958
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().