Blocking Approach for Identification of Rare Variants in Family-Based Association Studies
Asuman S Turkmen and
Shili Lin
PLOS ONE, 2014, vol. 9, issue 1, 1-11
Abstract:
With the advent of next-generation sequencing technology, rare variant association analysis is increasingly being conducted to identify genetic variants associated with complex traits. In recent years, significant effort has been devoted to develop powerful statistical methods to test such associations for population-based designs. However, there has been relatively little development for family-based designs although family data have been shown to be more powerful to detect rare variants. This study introduces a blocking approach that extends two popular family-based common variant association tests to rare variants association studies. Several options are considered to partition a genomic region (gene) into “independent” blocks by which information from SNVs is aggregated within a block and an overall test statistic for the entire genomic region is calculated by combining information across these blocks. The proposed methodology allows different variants to have different directions (risk or protective) and specification of minor allele frequency threshold is not needed. We carried out a simulation to verify the validity of the method by showing that type I error is well under control when the underlying null hypothesis and the assumption of independence across blocks are satisfied. Further, data from the Genetic Analysis Workshop are utilized to illustrate the feasibility and performance of the proposed methodology in a realistic setting.
Date: 2014
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0086126 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 86126&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0086126
DOI: 10.1371/journal.pone.0086126
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().