A Network Based Method for Analysis of lncRNA-Disease Associations and Prediction of lncRNAs Implicated in Diseases
Xiaofei Yang,
Lin Gao,
Xingli Guo,
Xinghua Shi,
Hao Wu,
Fei Song and
Bingbo Wang
PLOS ONE, 2014, vol. 9, issue 1, 1-10
Abstract:
Increasing evidence has indicated that long non-coding RNAs (lncRNAs) are implicated in and associated with many complex human diseases. Despite of the accumulation of lncRNA-disease associations, only a few studies had studied the roles of these associations in pathogenesis. In this paper, we investigated lncRNA-disease associations from a network view to understand the contribution of these lncRNAs to complex diseases. Specifically, we studied both the properties of the diseases in which the lncRNAs were implicated, and that of the lncRNAs associated with complex diseases. Regarding the fact that protein coding genes and lncRNAs are involved in human diseases, we constructed a coding-non-coding gene-disease bipartite network based on known associations between diseases and disease-causing genes. We then applied a propagation algorithm to uncover the hidden lncRNA-disease associations in this network. The algorithm was evaluated by leave-one-out cross validation on 103 diseases in which at least two genes were known to be involved, and achieved an AUC of 0.7881. Our algorithm successfully predicted 768 potential lncRNA-disease associations between 66 lncRNAs and 193 diseases. Furthermore, our results for Alzheimer's disease, pancreatic cancer, and gastric cancer were verified by other independent studies.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0087797 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 87797&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0087797
DOI: 10.1371/journal.pone.0087797
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().