Controllability Analysis of Protein Glycosylation in Cho Cells
Melissa M St. Amand,
Kevin Tran,
Devesh Radhakrishnan,
Anne S Robinson and
Babatunde A Ogunnaike
PLOS ONE, 2014, vol. 9, issue 2, 1-16
Abstract:
To function as intended in vivo, a majority of biopharmaceuticals require specific glycan distributions. However, achieving a precise glycan distribution during manufacturing can be challenging because glycosylation is a non-template driven cellular process, with the potential for significant uncontrolled variability in glycan distributions. As important as the glycan distribution is to the end-use performance of biopharmaceuticals, to date, no strategy exists for controlling glycosylation on-line. However, before expending the significant amount of effort and expense required to develop and implement on-line control strategies to address the problem of glycosylation heterogeneity, it is imperative to assess first the extent to which the very complex process of glycosylation is controllable, thereby establishing what is theoretically achievable prior to any experimental attempts. In this work, we present a novel methodology for assessing the output controllability of glycosylation, a prototypical example of an extremely high-dimensional and very non-linear system. We first discuss a method for obtaining the process gain matrix for glycosylation that involves performing model simulations and data analysis systematically and judiciously according to a statistical design of experiments (DOE) scheme and then employing Analysis of Variance (ANOVA) to determine the elements of process gain matrix from the resulting simulation data. We then discuss how to use the resulting high-dimensional gain matrix to assess controllability. The utility of this method is demonstrated with a practical example where we assess the controllability of various classes of glycans and of specific glycoforms that are typically found in recombinant biologics produced with Chinese Hamster Ovary (CHO) cells. In addition to providing useful insight into the extent to which on-line glycosylation control is achievable in actual manufacturing processes, the results also have important implications for genetically engineering cell lines design for enhanced glycosylation controllability.
Date: 2014
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0087973 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 87973&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0087973
DOI: 10.1371/journal.pone.0087973
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().