EconPapers    
Economics at your fingertips  
 

Recoverability Analysis for Modified Compressive Sensing with Partially Known Support

Jun Zhang, Yuanqing Li, Zhenghui Gu and Zhu Liang Yu

PLOS ONE, 2014, vol. 9, issue 2, 1-7

Abstract: The recently proposed modified-compressive sensing (modified-CS), which utilizes the partially known support as prior knowledge, significantly improves the performance of recovering sparse signals. However, modified-CS depends heavily on the reliability of the known support. An important problem, which must be studied further, is the recoverability of modified-CS when the known support contains a number of errors. In this letter, we analyze the recoverability of modified-CS in a stochastic framework. A sufficient and necessary condition is established for exact recovery of a sparse signal. Utilizing this condition, the recovery probability that reflects the recoverability of modified-CS can be computed explicitly for a sparse signal with nonzero entries. Simulation experiments have been carried out to validate our theoretical results.

Date: 2014
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0087985 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 87985&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0087985

DOI: 10.1371/journal.pone.0087985

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0087985