EconPapers    
Economics at your fingertips  
 

Data Simulation in Machine Olfaction with the R Package Chemosensors

Andrey Ziyatdinov and Alexandre Perera-Lluna

PLOS ONE, 2014, vol. 9, issue 2, 1-19

Abstract: In machine olfaction, the design of applications based on gas sensor arrays is highly dependent on the robustness of the signal and data processing algorithms. While the practice of testing the algorithms on public benchmarks is not common in the field, we propose software for performing data simulations in the machine olfaction field by generating parameterized sensor array data. The software is implemented as an R language package chemosensors which is open-access, platform-independent and self-contained. We introduce the concept of a virtual sensor array which can be used as a data generation tool. In this work, we describe the data simulation workflow which basically consists of scenario definition, virtual array parameterization and the generation of sensor array data. We also give examples of the processing of the simulated data as proof of concept for the parameterized sensor array data: the benchmarking of classification algorithms, the evaluation of linear- and non-linear regression algorithms, and the biologically inspired processing of sensor array data. All the results presented were obtained under version 0.7.6 of the chemosensors package whose home page is chemosensors.r-forge.r-project.org.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088839 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 88839&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0088839

DOI: 10.1371/journal.pone.0088839

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0088839