Kronecker Product Linear Exponent AR(1) Correlation Structures for Multivariate Repeated Measures
Sean L Simpson,
Lloyd J Edwards,
Martin A Styner and
Keith E Muller
PLOS ONE, 2014, vol. 9, issue 2, 1-10
Abstract:
Longitudinal imaging studies have moved to the forefront of medical research due to their ability to characterize spatio-temporal features of biological structures across the lifespan. Credible models of the correlations in longitudinal imaging require two or more pattern components. Valid inference requires enough flexibility of the correlation model to allow reasonable fidelity to the true pattern. On the other hand, the existence of computable estimates demands a parsimonious parameterization of the correlation structure. For many one-dimensional spatial or temporal arrays, the linear exponent autoregressive (LEAR) correlation structure meets these two opposing goals in one model. The LEAR structure is a flexible two-parameter correlation model that applies to situations in which the within-subject correlation decreases exponentially in time or space. It allows for an attenuation or acceleration of the exponential decay rate imposed by the commonly used continuous-time AR(1) structure. We propose the Kronecker product LEAR correlation structure for multivariate repeated measures data in which the correlation between measurements for a given subject is induced by two factors (e.g., spatial and temporal dependence). Excellent analytic and numerical properties make the Kronecker product LEAR model a valuable addition to the suite of parsimonious correlation structures for multivariate repeated measures data. Longitudinal medical imaging data of caudate morphology in schizophrenia illustrates the appeal of the Kronecker product LEAR correlation structure.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088864 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 88864&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0088864
DOI: 10.1371/journal.pone.0088864
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().