Finding Near-Optimal Groups of Epidemic Spreaders in a Complex Network
Geoffrey Moores,
Paulo Shakarian,
Brian Macdonald and
Nicholas Howard
PLOS ONE, 2014, vol. 9, issue 4, 1-10
Abstract:
In this paper, we present algorithms to find near-optimal sets of epidemic spreaders in complex networks. We extend the notion of local-centrality, a centrality measure previously shown to correspond with a node's ability to spread an epidemic, to sets of nodes by introducing combinatorial local centrality. Though we prove that finding a set of nodes that maximizes this new measure is NP-hard, good approximations are available. We show that a strictly greedy approach obtains the best approximation ratio unless P = NP and then formulate a modified version of this approach that leverages qualities of the network to achieve a faster runtime while maintaining this theoretical guarantee. We perform an experimental evaluation on samples from several different network structures which demonstrate that our algorithm maximizes combinatorial local centrality and consistently chooses the most effective set of nodes to spread infection under the SIR model, relative to selecting the top nodes using many common centrality measures. We also demonstrate that the optimized algorithm we develop scales effectively.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0090303 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 90303&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0090303
DOI: 10.1371/journal.pone.0090303
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().