EconPapers    
Economics at your fingertips  
 

Very Similar Spacing-Effect Patterns in Very Different Learning/Practice Domains

Jürgen Kornmeier, Manfred Spitzer and Zrinka Sosic-Vasic

PLOS ONE, 2014, vol. 9, issue 3, 1-11

Abstract: Temporally distributed (“spaced”) learning can be twice as efficient as massed learning. This “spacing effect” occurs with a broad spectrum of learning materials, with humans of different ages, with non-human vertebrates and also invertebrates. This indicates, that very basic learning mechanisms are at work (“generality”). Although most studies so far focused on very narrow spacing interval ranges, there is some evidence for a non-monotonic behavior of this “spacing effect” (“nonlinearity”) with optimal spacing intervals at different time scales. In the current study we focused both the nonlinearity aspect by using a broad range of spacing intervals and the generality aspect by using very different learning/practice domains: Participants learned German-Japanese word pairs and performed visual acuity tests. For each of six groups we used a different spacing interval between learning/practice units from 7 min to 24 h in logarithmic steps. Memory retention was studied in three consecutive final tests, one, seven and 28 days after the final learning unit. For both the vocabulary learning and visual acuity performance we found a highly significant effect of the factor spacing interval on the final test performance. In the 12 h-spacing-group about 85% of the learned words stayed in memory and nearly all of the visual acuity gain was preserved. In the 24 h-spacing-group, in contrast, only about 33% of the learned words were retained and the visual acuity gain dropped to zero. The very similar patterns of results from the two very different learning/practice domains point to similar underlying mechanisms. Further, our results indicate spacing in the range of 12 hours as optimal. A second peak may be around a spacing interval of 20 min but here the data are less clear. We discuss relations between our results and basic learning at the neuronal level.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0090656 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 90656&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0090656

DOI: 10.1371/journal.pone.0090656

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0090656