Classification of Fricative Consonants for Speech Enhancement in Hearing Devices
Ying-Yee Kong,
Ala Mullangi and
Kostas Kokkinakis
PLOS ONE, 2014, vol. 9, issue 4, 1-8
Abstract:
Objective: To investigate a set of acoustic features and classification methods for the classification of three groups of fricative consonants differing in place of articulation. Method: A support vector machine (SVM) algorithm was used to classify the fricatives extracted from the TIMIT database in quiet and also in speech babble noise at various signal-to-noise ratios (SNRs). Spectral features including four spectral moments, peak, slope, Mel-frequency cepstral coefficients (MFCC), Gammatone filters outputs, and magnitudes of fast Fourier Transform (FFT) spectrum were used for the classification. The analysis frame was restricted to only 8 msec. In addition, commonly-used linear and nonlinear principal component analysis dimensionality reduction techniques that project a high-dimensional feature vector onto a lower dimensional space were examined. Results: With 13 MFCC coefficients, 14 or 24 Gammatone filter outputs, classification performance was greater than or equal to 85% in quiet and at +10 dB SNR. Using 14 Gammatone filter outputs above 1 kHz, classification accuracy remained high (greater than 80%) for a wide range of SNRs from +20 to +5 dB SNR. Conclusions: High levels of classification accuracy for fricative consonants in quiet and in noise could be achieved using only spectral features extracted from a short time window. Results of this work have a direct impact on the development of speech enhancement algorithms for hearing devices.
Date: 2014
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0095001 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 95001&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0095001
DOI: 10.1371/journal.pone.0095001
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().