Predicting mTOR Inhibitors with a Classifier Using Recursive Partitioning and Naïve Bayesian Approaches
Ling Wang,
Lei Chen,
Zhihong Liu,
Minghao Zheng,
Qiong Gu and
Jun Xu
PLOS ONE, 2014, vol. 9, issue 5, 1-15
Abstract:
Background: Mammalian target of rapamycin (mTOR) is a central controller of cell growth, proliferation, metabolism, and angiogenesis. Thus, there is a great deal of interest in developing clinical drugs based on mTOR. In this paper, in silico models based on multi-scaffolds were developed to predict mTOR inhibitors or non-inhibitors. Methods: First 1,264 diverse compounds were collected and categorized as mTOR inhibitors and non-inhibitors. Two methods, recursive partitioning (RP) and naïve Bayesian (NB), were used to build combinatorial classification models of mTOR inhibitors versus non-inhibitors using physicochemical descriptors, fingerprints, and atom center fragments (ACFs). Results: A total of 253 models were constructed and the overall predictive accuracies of the best models were more than 90% for both the training set of 964 and the external test set of 300 diverse compounds. The scaffold hopping abilities of the best models were successfully evaluated through predicting 37 new recently published mTOR inhibitors. Compared with the best RP and Bayesian models, the classifier based on ACFs and Bayesian shows comparable or slightly better in performance and scaffold hopping abilities. A web server was developed based on the ACFs and Bayesian method (http://rcdd.sysu.edu.cn/mtor/). This web server can be used to predict whether a compound is an mTOR inhibitor or non-inhibitor online. Conclusion: In silico models were constructed to predict mTOR inhibitors using recursive partitioning and naïve Bayesian methods, and a web server (mTOR Predictor) was also developed based on the best model results. Compound prediction or virtual screening can be carried out through our web server. Moreover, the favorable and unfavorable fragments for mTOR inhibitors obtained from Bayesian classifiers will be helpful for lead optimization or the design of new mTOR inhibitors.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0095221 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 95221&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0095221
DOI: 10.1371/journal.pone.0095221
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().