Economics at your fingertips  

Lord’s Paradox in a Continuous Setting and a Regression Artifact in Numerical Cognition Research

Kimmo Eriksson and Olle Häggström

PLOS ONE, 2014, vol. 9, issue 4, 1-7

Abstract: In this paper we review, and elaborate on, the literature on a regression artifact related to Lord’s paradox in a continuous setting. Specifically, the question is whether a continuous property of individuals predicts improvement from training between a pretest and a posttest. If the pretest score is included as a covariate, regression to the mean will lead to biased results if two critical conditions are satisfied: (1) the property is correlated with pretest scores and (2) pretest scores include random errors. We discuss how these conditions apply to the analysis in a published experimental study, the authors of which concluded that linearity of children’s estimations of numerical magnitudes predicts arithmetic learning from a training program. However, the two critical conditions were clearly met in that study. In a reanalysis we find that the bias in the method can fully account for the effect found in the original study. In other words, data are consistent with the null hypothesis that numerical magnitude estimations are unrelated to arithmetic learning.

Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link) (text/html) ... 95949&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

DOI: 10.1371/journal.pone.0095949

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

Page updated 2020-10-31
Handle: RePEc:plo:pone00:0095949