An Automated Procedure for Evaluating Song Imitation
Yael Mandelblat-Cerf and
Michale S Fee
PLOS ONE, 2014, vol. 9, issue 5, 1-13
Abstract:
Songbirds have emerged as an excellent model system to understand the neural basis of vocal and motor learning. Like humans, songbirds learn to imitate the vocalizations of their parents or other conspecific “tutors.” Young songbirds learn by comparing their own vocalizations to the memory of their tutor song, slowly improving until over the course of several weeks they can achieve an excellent imitation of the tutor. Because of the slow progression of vocal learning, and the large amounts of singing generated, automated algorithms for quantifying vocal imitation have become increasingly important for studying the mechanisms underlying this process. However, methodologies for quantifying song imitation are complicated by the highly variable songs of either juvenile birds or those that learn poorly because of experimental manipulations. Here we present a method for the evaluation of song imitation that incorporates two innovations: First, an automated procedure for selecting pupil song segments, and, second, a new algorithm, implemented in Matlab, for computing both song acoustic and sequence similarity. We tested our procedure using zebra finch song and determined a set of acoustic features for which the algorithm optimally differentiates between similar and non-similar songs.
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0096484 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 96484&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0096484
DOI: 10.1371/journal.pone.0096484
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().