Evaluation of Unrestrained Replica-Exchange Simulations Using Dynamic Walkers in Temperature Space for Protein Structure Refinement
Mark A Olson and
Michael S Lee
PLOS ONE, 2014, vol. 9, issue 5, 1-9
Abstract:
A central problem of computational structural biology is the refinement of modeled protein structures taken from either comparative modeling or knowledge-based methods. Simulations are commonly used to achieve higher resolution of the structures at the all-atom level, yet methodologies that consistently yield accurate results remain elusive. In this work, we provide an assessment of an adaptive temperature-based replica exchange simulation method where the temperature clients dynamically walk in temperature space to enrich their population and exchanges near steep energetic barriers. This approach is compared to earlier work of applying the conventional method of static temperature clients to refine a dataset of conformational decoys. Our results show that, while an adaptive method has many theoretical advantages over a static distribution of client temperatures, only limited improvement was gained from this strategy in excursions of the downhill refinement regime leading to an increase in the fraction of native contacts. To illustrate the sampling differences between the two simulation methods, energy landscapes are presented along with their temperature client profiles.
Date: 2014
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0096638 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 96638&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0096638
DOI: 10.1371/journal.pone.0096638
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().