fcGENE: A Versatile Tool for Processing and Transforming SNP Datasets
Nab Raj Roshyara and
Markus Scholz
PLOS ONE, 2014, vol. 9, issue 7, 1-7
Abstract:
Background: Modern analysis of high-dimensional SNP data requires a number of biometrical and statistical methods such as pre-processing, analysis of population structure, association analysis and genotype imputation. Software used for these purposes often rely on specific and incompatible input and output data formats. Therefore extensive data management including multiple format conversions is necessary during analyses. Methods: In order to support fast and efficient management and bio-statistical quality control of high-dimensional SNP data, we developed the publically available software fcGENE using C++ object-oriented programming language. This software simplifies and automates the use of different existing analysis packages, especially during the workflow of genotype imputations and corresponding analyses. Results: fcGENE transforms SNP data and imputation results into different formats required for a large variety of analysis packages such as PLINK, SNPTEST, HAPLOVIEW, EIGENSOFT, GenABEL and tools used for genotype imputation such as MaCH, IMPUTE, BEAGLE and others. Data Management tasks like merging, splitting, extracting SNP and pedigree information can be performed. fcGENE also supports a number of bio-statistical quality control processes and quality based filtering processes at SNP- and sample-wise level. The tool also generates templates of commands required to run specific software packages, especially those required for genotype imputation. We demonstrate the functionality of fcGENE by example workflows of SNP data analyses and provide a comprehensive manual of commands, options and applications. Conclusions: We have developed a user-friendly open-source software fcGENE, which comprehensively supports SNP data management, quality control and analysis workflows. Download statistics and corresponding feedbacks indicate that software is highly recognised and extensively applied by the scientific community.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0097589 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 97589&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0097589
DOI: 10.1371/journal.pone.0097589
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().