Search for Information-Bearing Components in Neural Data
Meng Hu and
Hualou Liang
PLOS ONE, 2014, vol. 9, issue 6, 1-13
Abstract:
Multivariate empirical mode decomposition (MEMD) is an important extension of EMD, suitable for processing multichannel data. It can adaptively decompose multivariate data into a set of intrinsic mode functions (IMFs) that are matched both in number and in frequency scale. This method is thus holds great potential for the analysis of multi- channel neural recordings as it is capable of ensuring all the intrinsic oscillatory modes are aligned not only across channels, but also across trials. Given a plethora of IMFs derived by MEMD, a question of significant interest is how to identify which IMFs contain information, and which IMFs are noise. Existing methods that exploit the dyadic filter bank structure of white noise decomposition are insufficient since the IMFs do not always adhere to the presumed dyadic relationship. Here we propose a statistical procedure to identify information-bearing IMFs, which is built upon MEMD that allows adding noise as separate channels to serve as a reference to facilitate IMF identification. In this procedure, Wasserstein distance is used to measure the similarity between the reference IMF and that from data. Simulations are performed to validate the method. Local field potentials from cortex of monkeys while performing visual tasks are used for demonstration.
Date: 2014
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0099793 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 99793&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0099793
DOI: 10.1371/journal.pone.0099793
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().