EconPapers    
Economics at your fingertips  
 

Support Vector Machine Classification of Streptavidin-Binding Aptamers

Xinliang Yu, Yixiong Yu and Qun Zeng

PLOS ONE, 2014, vol. 9, issue 6, 1-5

Abstract: Background: Synthesizing and characterizing aptamers with high affinity and specificity have been extensively carried out for analytical and biomedical applications. Few publications can be found that describe structure–activity relationships (SARs) of candidate aptamer sequences. Methodology: This paper reports pattern recognition with support vector machine (SVM) classification techniques for the identification of streptavidin-binding aptamers as “low” or “high” affinity aptamers. The SVM parameters C and γ were optimized using genetic algorithms. Four descriptors, the topological descriptor PW4 (path/walk 4 - Randic shape index), the connectivity index X3A (average connectivity index chi-3), the topological charge index JGI2 (mean topological charge index of order 2), and the free energy E of the secondary structure, were used to describe the structures of candidate aptamer sequences from SELEX selection (Schütze et al. (2011) PLoS ONE (12):e29604). Conclusions: The predicted fractions of winning streptavidin-binding aptamers for ten rounds of SELEX conform to the aptamer evolutionary principles of SELEX-based screening. The feasibility of applying pattern recognition based on SVM and genetic algorithms for streptavidin-binding aptamers has been demonstrated.

Date: 2014
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0099964 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 99964&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0099964

DOI: 10.1371/journal.pone.0099964

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0099964