Bayesian Weighting of Statistical Potentials in NMR Structure Calculation
Martin Mechelke and
Michael Habeck
PLOS ONE, 2014, vol. 9, issue 6, 1-11
Abstract:
The use of statistical potentials in NMR structure calculation improves the accuracy of the final structure but also raises issues of double counting and possible bias. Because statistical potentials are averaged over a large set of structures, they may not reflect the preferences of a particular structure or data set. We propose a Bayesian method to incorporate a knowledge-based backbone dihedral angle potential into an NMR structure calculation. To avoid bias exerted through the backbone potential, we adjust its weight by inferring it from the experimental data. We demonstrate that an optimally weighted potential leads to an improvement in the accuracy and quality of the final structure, especially with sparse and noisy data. Our findings suggest that no universally optimal weight exists, and that the weight should be determined based on the experimental data. Other knowledge-based potentials can be incorporated using the same approach.
Date: 2014
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0100197 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 00197&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0100197
DOI: 10.1371/journal.pone.0100197
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().