EconPapers    
Economics at your fingertips  
 

Order Reduction of the Chemical Master Equation via Balanced Realisation

Fernando López-Caamal and Tatiana T Marquez-Lago

PLOS ONE, 2014, vol. 9, issue 8, 1-13

Abstract: We consider a Markov process in continuous time with a finite number of discrete states. The time-dependent probabilities of being in any state of the Markov chain are governed by a set of ordinary differential equations, whose dimension might be large even for trivial systems. Here, we derive a reduced ODE set that accurately approximates the probabilities of subspaces of interest with a known error bound. Our methodology is based on model reduction by balanced truncation and can be considerably more computationally efficient than solving the chemical master equation directly. We show the applicability of our method by analysing stochastic chemical reactions. First, we obtain a reduced order model for the infinitesimal generator of a Markov chain that models a reversible, monomolecular reaction. Later, we obtain a reduced order model for a catalytic conversion of substrate to a product (a so-called Michaelis-Menten mechanism), and compare its dynamics with a rapid equilibrium approximation method. For this example, we highlight the savings on the computational load obtained by means of the reduced-order model. Furthermore, we revisit the substrate catalytic conversion by obtaining a lower-order model that approximates the probability of having predefined ranges of product molecules. In such an example, we obtain an approximation of the output of a model with 5151 states by a reduced model with 16 states. Finally, we obtain a reduced-order model of the Brusselator.

Date: 2014
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0103521 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 03521&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0103521

DOI: 10.1371/journal.pone.0103521

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0103521