EconPapers    
Economics at your fingertips  
 

Combining Physicochemical and Evolutionary Information for Protein Contact Prediction

Michael Schneider and Oliver Brock

PLOS ONE, 2014, vol. 9, issue 10, 1-15

Abstract: We introduce a novel contact prediction method that achieves high prediction accuracy by combining evolutionary and physicochemical information about native contacts. We obtain evolutionary information from multiple-sequence alignments and physicochemical information from predicted ab initio protein structures. These structures represent low-energy states in an energy landscape and thus capture the physicochemical information encoded in the energy function. Such low-energy structures are likely to contain native contacts, even if their overall fold is not native. To differentiate native from non-native contacts in those structures, we develop a graph-based representation of the structural context of contacts. We then use this representation to train an support vector machine classifier to identify most likely native contacts in otherwise non-native structures. The resulting contact predictions are highly accurate. As a result of combining two sources of information—evolutionary and physicochemical—we maintain prediction accuracy even when only few sequence homologs are present. We show that the predicted contacts help to improve ab initio structure prediction. A web service is available at http://compbio.robotics.tu-berlin.de/epc-map/.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0108438 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 08438&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0108438

DOI: 10.1371/journal.pone.0108438

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0108438