Modeling the Dynamics of Disease States in Depression
Selver Demic and
Sen Cheng
PLOS ONE, 2014, vol. 9, issue 10, 1-14
Abstract:
Major depressive disorder (MDD) is a common and costly disorder associated with considerable morbidity, disability, and risk for suicide. The disorder is clinically and etiologically heterogeneous. Despite intense research efforts, the response rates of antidepressant treatments are relatively low and the etiology and progression of MDD remain poorly understood. Here we use computational modeling to advance our understanding of MDD. First, we propose a systematic and comprehensive definition of disease states, which is based on a type of mathematical model called a finite-state machine. Second, we propose a dynamical systems model for the progression, or dynamics, of MDD. The model is abstract and combines several major factors (mechanisms) that influence the dynamics of MDD. We study under what conditions the model can account for the occurrence and recurrence of depressive episodes and how we can model the effects of antidepressant treatments and cognitive behavioral therapy within the same dynamical systems model through changing a small subset of parameters. Our computational modeling suggests several predictions about MDD. Patients who suffer from depression can be divided into two sub-populations: a high-risk sub-population that has a high risk of developing chronic depression and a low-risk sub-population, in which patients develop depression stochastically with low probability. The success of antidepressant treatment is stochastic, leading to widely different times-to-remission in otherwise identical patients. While the specific details of our model might be subjected to criticism and revisions, our approach shows the potential power of computationally modeling depression and the need for different type of quantitative data for understanding depression.
Date: 2014
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0110358 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 10358&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0110358
DOI: 10.1371/journal.pone.0110358
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().