Exonic Variants Associated with Development of Aspirin Exacerbated Respiratory Diseases
Seung-Woo Shin,
Byung Lae Park,
HunSoo Chang,
Jong Sook Park,
Da-Jeong Bae,
Hyun-Ji Song,
Inseon S Choi,
Mi-Kyeong Kim,
Hea-Sim Park,
Lyoung Hyo Kim,
Suhg Namgoong,
Ji On Kim,
Hyoung Doo Shin and
Choon-Sik Park
PLOS ONE, 2014, vol. 9, issue 11, 1-8
Abstract:
Aspirin-exacerbated respiratory disease (AERD) is one phenotype of asthma, often occurring in the form of a severe and sudden attack. Due to the time-consuming nature and difficulty of oral aspirin challenge (OAC) for AERD diagnosis, non-invasive biomarkers have been sought. The aim of this study was to identify AERD-associated exonic SNPs and examine the diagnostic potential of a combination of these candidate SNPs to predict AERD. DNA from 165 AERD patients, 397 subjects with aspirin-tolerant asthma (ATA), and 398 normal controls were subjected to an Exome BeadChip assay containing 240K SNPs. 1,023 models (210-1) were generated from combinations of the top 10 SNPs, selected by the p-values in association with AERD. The area under the curve (AUC) of the receiver operating characteristic (ROC) curves was calculated for each model. SNP Function Portal and PolyPhen-2 were used to validate the functional significance of candidate SNPs. An exonic SNP, exm537513 in HLA-DPB1, showed the lowest p-value (p = 3.40×10−8) in its association with AERD risk. From the top 10 SNPs, a combination model of 7 SNPs (exm537513, exm83523, exm1884673, exm538564, exm2264237, exm396794, and exm791954) showed the best AUC of 0.75 (asymptotic p-value of 7.94×10−21), with 34% sensitivity and 93% specificity to discriminate AERD from ATA. Amino acid changes due to exm83523 in CHIA were predicted to be “probably damaging” to the structure and function of the protein, with a high score of ‘1’. A combination model of seven SNPs may provide a useful, non-invasive genetic marker combination for predicting AERD.
Date: 2014
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0111887 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 11887&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0111887
DOI: 10.1371/journal.pone.0111887
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().