The Efficacy of the Ribonucleotide Reductase Inhibitor Didox in Preclinical Models of AML
Guerry J Cook,
David L Caudell,
Howard L Elford and
Timothy S Pardee
PLOS ONE, 2014, vol. 9, issue 11, 1-10
Abstract:
Acute Myeloid Leukemia (AML) is an aggressive malignancy which leads to marrow failure, and ultimately death. There is a desperate need for new therapeutics for these patients. Ribonucleotide reductase (RR) is the rate limiting enzyme in DNA synthesis. Didox (3,4-Dihydroxybenzohydroxamic acid) is a novel RR inhibitor noted to be more potent than hydroxyurea. In this report we detail the activity and toxicity of Didox in preclinical models of AML. RR was present in all AML cell lines and primary patient samples tested. Didox was active against all human and murine AML lines tested with IC50 values in the low micromolar range (mean IC50 37 µM [range 25.89–52.70 µM]). It was active against primary patient samples at concentrations that did not affect normal hematopoietic stem cells (HSCs). Didox exposure resulted in DNA damage and p53 induction culminating in apoptosis. In syngeneic, therapy-resistant AML models, single agent Didox treatment resulted in a significant reduction in leukemia burden and a survival benefit. Didox was well tolerated, as marrow from treated animals was morphologically indistinguishable from controls. Didox exposure at levels that impaired leukemia growth did not inhibit normal HSC engraftment. In summary, Didox was well tolerated and effective against preclinical models of AML.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0112619 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 12619&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0112619
DOI: 10.1371/journal.pone.0112619
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().