EconPapers    
Economics at your fingertips  
 

Core Bioactive Components Promoting Blood Circulation in the Traditional Chinese Medicine Compound Xueshuantong Capsule (CXC) Based on the Relevance Analysis between Chemical HPLC Fingerprint and In Vivo Biological Effects

Hong Liu, Jie-ping Liang, Pei-bo Li, Wei Peng, Yao-yao Peng, Gao-min Zhang, Cheng-shi Xie, Chao-feng Long and Wei-wei Su

PLOS ONE, 2014, vol. 9, issue 11, 1-15

Abstract: Compound xueshuantong capsule (CXC) is an oral traditional Chinese herbal formula (CHF) comprised of Panax notoginseng (PN), Radix astragali (RA), Salvia miltiorrhizae (SM), and Radix scrophulariaceae (RS). The present investigation was designed to explore the core bioactive components promoting blood circulation in CXC using high-performance liquid chromatography (HPLC) and animal studies. CXC samples were prepared with different proportions of the 4 herbs according to a four-factor, nine-level uniform design. CXC samples were assessed with HPLC, which identified 21 components. For the animal experiments, rats were soaked in ice water during the time interval between two adrenaline hydrochloride injections to reduce blood circulation. We assessed whole-blood viscosity (WBV), erythrocyte aggregation and red corpuscle electrophoresis indices (EAI and RCEI, respectively), plasma viscosity (PV), maximum platelet aggregation rate (MPAR), activated partial thromboplastin time (APTT), and prothrombin time (PT). Based on the hypothesis that CXC sample effects varied with differences in components, we performed grey relational analysis (GRA), principal component analysis (PCA), ridge regression (RR), and radial basis function (RBF) to evaluate the contribution of each identified component. Our results indicate that panaxytriol, ginsenoside Rb1, angoroside C, protocatechualdehyde, ginsenoside Rd, and calycosin-7-O-β-D-glucoside are the core bioactive components, and that they might play different roles in the alleviation of circulation dysfunction. Panaxytriol and ginsenoside Rb1 had close relevance to red blood cell (RBC) aggregation, angoroside C was related to platelet aggregation, protocatechualdehyde was involved in intrinsic clotting activity, ginsenoside Rd affected RBC deformability and plasma proteins, and calycosin-7-O-β-D-glucoside influenced extrinsic clotting activity. This study indicates that angoroside C, calycosin-7-O-β-D-glucoside, panaxytriol, and protocatechualdehyde may have novel therapeutic uses.

Date: 2014
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0112675 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 12675&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0112675

DOI: 10.1371/journal.pone.0112675

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0112675