EconPapers    
Economics at your fingertips  
 

Development of a Screening Tool for Sleep Disordered Breathing in Children Using the Phone Oximeter™

Ainara Garde, Parastoo Dehkordi, Walter Karlen, David Wensley, J Mark Ansermino and Guy A Dumont

PLOS ONE, 2014, vol. 9, issue 11, 1-15

Abstract: Background: Sleep disordered breathing (SDB) can lead to daytime sleepiness, growth failure and developmental delay in children. Polysomnography (PSG), the gold standard to diagnose SDB, is a highly resource-intensive test, confined to the sleep laboratory. Aim: To combine the blood oxygen saturation (SpO2) characterization and cardiac modulation, quantified by pulse rate variability (PRV), to identify children with SDB using the Phone Oximeter, a device integrating a pulse oximeter with a smartphone. Methods: Following ethics approval and informed consent, 160 children referred to British Columbia Children's Hospital for overnight PSG were recruited. A second pulse oximeter sensor applied to the finger adjacent to the one used for standard PSG was attached to the Phone Oximeter to record overnight pulse oximetry (SpO2 and photoplethysmogram (PPG)) alongside the PSG. Results: We studied 146 children through the analysis of the SpO2 pattern, and PRV as an estimate of heart rate variability calculated from the PPG. SpO2 variability and SpO2 spectral power at low frequency, was significantly higher in children with SDB due to the modulation provoked by airway obstruction during sleep (p-value ). PRV analysis reflected a significant augmentation of sympathetic activity provoked by intermittent hypoxia in SDB children. A linear classifier was trained with the most discriminating features to identify children with SDB. The classifier was validated with internal and external cross-validation, providing a high negative predictive value (92.6%) and a good balance between sensitivity (88.4%) and specificity (83.6%). Combining SpO2 and PRV analysis improved the classification performance, providing an area under the receiver operating characteristic curve of 88%, beyond the 82% achieved using SpO2 analysis alone. Conclusions: These results demonstrate that the implementation of this algorithm in the Phone Oximeter will provide an improved portable, at-home screening tool, with the capability of monitoring patients over multiple nights.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0112959 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 12959&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0112959

DOI: 10.1371/journal.pone.0112959

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0112959